Using Hidden Markov Models for Feature Extraction in Paper Currency Recognition

نویسنده

  • H. Hassanpour
چکیده

This paper proposes a new feature extraction technique for paper currency recognition. In this technique, the texture characteristic is used in the recognition. The Markov chain concept has been employed to model the texture of paper currencies as a random process. The method proposed in this paper can be used for recognizing paper currencies from different countries. In this method only intact examples of paper currencies from each denomination are used for training the system. We tested this method on more than 100 denominations from different countries, and the system was able to recognize 95% of data, correctly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Phoneme Sequence Recognition using Phoneme Duration Information in DNN-HSMM

Improving phoneme recognition has attracted the attention of many researchers due to its applications in various fields of speech processing. Recent research achievements show that using deep neural network (DNN) in speech recognition systems significantly improves the performance of these systems. There are two phases in DNN-based phoneme recognition systems including training and testing. Mos...

متن کامل

Automated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images

ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that                                                      facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...

متن کامل

Face Detection and Recognition using Hidden Markov Models

The work presented in this paper describes a Hidden Markov Model (HMM)-based framework for face recognition and face detection. The observation vectors used to characterize the states of the HMM are obtained using the coeecients of the Karhunen-Loeve Transform (KLT). The face recognition method presented in this paper reduces signiicantly the computational complexity of previous HMM-based face ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007